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A NEbl ADAPTIVE CLASSIFIW USING ITEZtATIVE FILTWIW 

By Arland L. Actkinson 

1.0 SUMMaRY 

To cope with sipnature v a r i a b i l i t y ,  an  algorithm has been def ined which w i l l  
adapt ively c l a s s i f y  remotely sensed data i n  t h e  visible and near-infrared band. 
The signal is divided i n t o  a space-dependent component and a target-dependent 
component. 
each target type.  
weighted, least-squares algorithm. 
t h e  sensor model and t h e  two-dimensional, es t imat ion algorithm. 

The target-dependent component is assumed fixed across t h e  image f o r  
The space-dependent component is estimated i t e r a t i v e l y  by a 

Incladed i n  t h i s  s tudy are t h e  der iva t ions  of 

2.0 INTRODUCTION: THE PROBLEM 

The c l a s s i f i c a t i o n  of remotely sensed image da ta ,  using cur ren t  techniques,  
is severely hindered by t h e  problem of s i g n a l  v a r i a b i l i t y .  
r e f e r s  t o  t h e  vast  d i f fe rences  i n  s igna ls  radiated by a s i n g l e  crop i n  response 
t o  d i f f e r e n t  environmental conditions.  Differences i n  s o i l  type,  local temperature. 
water content of t a r g e t ,  amount of haze and cloud cover,  and many o ther  f a c t o r s  can 
have a dec is ive  e f f e c t  on t h e  s p e c t r a l  response. I n  addi t ion,  changes i n  t h e  angle  
at which t h e  t a r g e t  i s  observed a f f e c t  t h e  signal. 

Signal  v a r i a b i l i t y  

One suggestion f o r  deal ing with s i g n a l  v a r i a b i l i t y  is t o  use an adapt ive 

This usua l ly  means t h a t  after a reso lu t ion  element is  
c l a s s i f i e r .  
course of an analysis .  
c laPs i f ied ,  t h e  s igna ture  of t h e  c l a s s  i s  altered by averaging i n  t h e  new observa- 
t i o n .  
nique, v a r i a t i o n s  i n  s igna l  can be p a r t i a l l y  modeled. 

However, t h i s  adkptive c l a s s i f i e r  method has some drawbacks. 

a. 

An adapt ive c l a s s i f i e r  alters t h e  c l a s s f f i c a t i o n  signatures i n  t h e  

The averaging-in process may be weighted o r  unweighted. By using t h i s  tech- 

R r o r s  i n  c l a s s i f i c a t i o n  may cause a c l a s s  s igna ture  t o  be "captured." 
For example, as Class A elements are misc lass i f ied  as Class B,  Class B s t a t i s t i c s  
begin t o  look more and more l i k e  Class A,  making f u t u r e  misc lass i f ica t ion  even 
more l i k e l y .  

b. The weighting i n  t h e  averaging is a r b i t r a r y ;  no c r i t e r i a  ex i s t  f o r  t h i s  
assignment, and ,  preszxibly,  t h e  values must be determined by experience. 

c .  This method presupposes very good i n i t i a l  e s t i m t e s  of t h e  s ignatures .  

d. T h i s  method r e s t r i c t s  t h e  taking of all ground t r u t h  t o  one p a r t  of t h e  
image, namely, t h e  f i r s t  part t o  be c l a s s i f i e d .  
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e. 

f .  

Few techniques account for  variations due t o  angle of observation. 

Observations of one class y i e ld  no information about t h e  var ia t ions of 
Consequently, i f  a class is not homogeneously dis- signals f r o m  other classes.  

t r ibuted throughout an image, t h e  signature statistics may not realistically re- 
flect t h e  environmental effects. 

As a result of these disadvantages, a new model would seem desirable.  

3.0 mYsIsa 

Many o f t h e  d i f f i c u l t i e s  of  current c l a s s i f i ca t ion  methods are t h e  r e s u l t s  of 
t rying t o  estimate t h e  current signature of each class .  
could be considered as functions of some vector representing the  environment, then 
signature modeling could be handled with s t a t i s t i c a l  f i l ters s imilar ly  t o  t he  
measurement modeling performed in  Apollo navigation. 
previously mentioned problems of  using t h e  averaging technique. 

I f  t h e  class signatures 

This should eliminate t h e  

A problem remains i n  implementing an environment estimation technique; namely, 
i n  order t o  model t h e  signal,  t he  class of t h e  targe'  being observed must be kncmn. 
This means tha t ,  i f  n classes of t a rge t s  are observed, then n signal types are 
t o  be processed i n  estimating t h e  environment vector. 

An analogous s i tua t ion  i n  navigation would be the  following: Suppose several  
different  types of measurements were being made (range, range rate, angles, etc.) ,  
but fo r  each measurement, only t h e  value was known, not t he  type. Before the  ob- 
servation could be used t o  update posit ion and velocity,  t h e  measurement type must 
be identified.  
reasonable, given the  current estimate of posit ion and velocity.  The observation 
would be assumed t o  be t h i s  most reasonable type and would then be incorporated. 
This same procedure could be used i n  processing remotely sensed data. Thus, 

This would be done by asking which type of neasurement was most 

1. F i r s t ,  determine what a measurement of each type (example, each crop 
c l a s s i f i ca t ion )  would look l i k e ,  given t h e  current estimate of t he  environment; 
i n  other words, estimate *he signature of each class .  If maximum likelihood is 
the c l a s s i f i ca t ion  c r i t e r ion ,  then t h e  mean and covariance matrix for  each class  
should be determinea. 

2. Then, classifL the  measurement by using whatever c l a s s i f i ca t ion  c r i t e r ion  
has been decided on. 

3. 
ment state. 
The c l a s s i f i ca t ion  c r i t e r ion  is maximum likelihood. 

Finally,  incorporate the  observation t o  r e f ine  tne estimate of the environ- 
The equations for  t h i s  procedure a r e  given in  the following sections.  

a T h i s  analysis is giTen i n  reference 1. 



3 

The d e l  of a s igna l  for ViRible and near visible l i g h t  reflect& Prom a 
target can be defined as 

s = m  (1) 

where 

S is the  signal received 

L is t h e  irradiance incident on t he  target 

R is the ref lectance of t h e  target 

T is t he  transmittance of t h e  atmosphere Prom the target t o  t h e  sensor 

This model does not consider effects of the type where incoming radiat ion is 
absorbed by the t a rge t  and radiated back a t  a di f fe ren t  frequency. 
is seldom radiated i n  t h i s  manner. Path radiance is also not considered. Path 
radiance is the s ignal  received by the  sensor which is not - the target; for 
example, radiat ion from other  points on t h e  ground o r  From the sun, which, be 6-9 
of t h e  aerosols i n  the  atmosphere, is re f lec ted  in to  the  sensor aperture. 
t h i s  effect is not as s igni f icant  as t h e  terms i n  equation (1). it can be impor- 
t an t ,  and it is hoped t h a t  t h i s  e f fec t  w i ?  Z be added t o  t h e  mael at stme Putwe 
date. 

Visible l i g h t  

A-*ha\lgh 

Reassociating t h e  terms in  equation (1) gives 

or  

where 

Y = l n S  

R' - In  R 

C = In  (LT) 

The signal Y ,  as w e l l  a6 R' and C, i s  a vector. Assume that t h e  i t h  component 
of C has the  form 

Ci = ai  + biU + c i V + diu2 + eiW + PiV2 

where U and ;I a re  the spa t i a l  coordinates of the  ta rge t  point. 

% h i s  sensor model is taken from reference 2. 
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Hence, 

The 
t h e  

R '  and a vectors  are combined i n  equat ion ( 3 )  s i n c e  n e i t h e r  is dependent on 
This gives t h e  f inal  f o r m  of t h e  signal model, namely, pos i t ion  of t h e  t a r g e t .  

where 

Y is t h e  signal received 

o * R ' + a  

Bi = biU + ciV + d.U2 + eiW + fiV2 
1 

remembering t h e  assumption t h a t  

I n  (LTli - ai + biU + ciV diu2 + eiW f iv2 

Equation (4 )  w i l l  be the  form used i n  t h i s  algorithm. Note t h a t  p i s  s p a t i a l l y  
independent; t h e  d i f fe rence  between two 
alone. On t h e  o ther  hand, 0 is s p a t i a l l y  dependent and t a r g e t  independent. 

P values  is a function of t a r g e t  i d e n t i t y  

5. o ESTIMATION ALGORITHM' 

A d i g i t a l  image can be thought of as a matrix of  numbers. 
i ,  j t h  pos i t ion  is  t o  be represented as d a r k ,  t h e  number at  t h a t  p o s i t i m  

For exampie, i f  
t h e  
would be small. The values of t h e  matrix should be thougnt of as observations of 
a signal. If t h e  s igna l  is  a l i n e a r  funct ion,  o r  can be approximated as a ' fnear  
funct ion,  t h e  terms of t h e  function can be estimated by least squares.  I f  t h e  
image signal values  are represented by t h e  vector  Y ,  then t o  say t h a t  t h e  s i g n a l  
is a l i n e a r  funct ion of t h e  vector  G means t h e r e  exists a matrix X such t h a t  

Y = xc ( 5 )  

~ ~ ~- 

%his der iva t ion  was taken from reference 3. 
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If X is known, then the best estimate of C, in the least squares Bense, ie given 
bY 

& = (xTx)-lxTy (6) 

A sequential estimator seem an obvious choice; however, the choice of the requance 
in which observations are processed is not obvious. 
in selecting %he sequence: 

The following ideas were used 

1. The data set used to generate G must be well defined. 

2. The estimate of C and the computations used at an image point should be 
used in estimating the next image points. 

3. Because modeling errors are always present, and because these errors 
probably increase as the distance from the estimation point increases, large jumps 
in the sequence should be avoided. 

For these reasons, these choices were made: 

1. The estimate of C at the i,Jth point will be made by using the observa- 
tions to the left and above that point; that is, over the set 

2. The estimate of Ct at (i-1, J )  and at (i, J-1) will be used to find 
2 at ( i ,  j). It turns out the estimate at (i-1, J-1) is also required. 

5.1 Unweighted Estimation Algorithm 

The set in expression (7 )  can be partitioned into 

A = {(x,y) ! 1 ( x  c i, 1 (y 

B = f(x,y) I 1 I X  < i, Y = J )  

C = I(x,y) I x = u, 1 (y J} 

D - f(i,J)} 

j) 

Clearly, the union of A, E, C, and D is equal to the set in expression (7), and no 
point in one cf the partition sets is in any of the other sets. 

For each partition, there exists a SI of equations of the form of eqwtion (1); 
the number of equations in the set is equal to the number of points in the partition. 
Hence, 
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YA = XAG 

YB = XBG 

Yc = XcG 

where the elements in one of the 
and the row8 of the matrix XQ are the coefficients of the elements of G. Re- 
calling equation (61, the best estimate of G, using all of the observations in 
sets A, B, C, and D, is 

Ya are the signals in set a = A, B, C ,  or D 

L 

b .  

xA 

33 
xC 

XD . .  

Both of the terms in equation (9) use quantities which will be inconvenient to de- 
fine, namely, XB, Xc, YA, YB, and 
Using Xm to stand for X in equation (9) over the set A U B, 

Y Fortunately, equation ( 9 )  can be rewritten. C' 

Similarly, 

Likewise, GAB, GAC, and GA will denote the best estimates of C, using the obser- 

vations in A U B, A U C, and A, respectively. Hence, the inverse term in 
equation (9) becomb 
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The second factor in equation ( 9 )  also neea to be rewritten. Recall that 

x3A6A = XAYA T 

xLx,E, = XABYAR T f XAYA T + 5 Y B  T 

X;fCXACiAC = XICYAC = x T Y + XCYC T 
A A  

Hence, the second term becomes 

X&XABim + x;cxAcc;Ac - XAXACA T + %YD T 

Substituting these rewritten terms into equation (9) givc 

-1 
= ['&'AB + 'ZCXAC - X 1 X A  + Xi%] [Xkm6,, + X;cxACEAc - X Z X A i A  + g Y J  

Equation (10) io the form that will be used in determining 
where X is some matrix and the equations in the sqstern are to be equally weighted. 

6 ,  assuming Y = XG, 

5.2 Weightei Estimation Algorithm 

. 
G. This is reascnable if all the observations are equally good. However, more dis- 
tant pixels would be expected t o  be less useful than closer pixels. 
distant measurements should be downweighted. 

In equation (10) each observation has exactly the same importance in calculating 

Consequently, 

Suppose G is to be estimated at some point Pn = (U,,V in the image. 
Select a number r such that 0 < r < 1. If d(i,n) is the distarrce, by whatever 
definition, between image points Pi and Pn, then the observation at Pi may be 

weighted by r d(i'n). UEing this weighting, the greater the distance of an obscr- 
vation from 
are, effectively, thrown away. 

n 

Pn, the smaller the weight, until finally the very distant observations 
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The remaining t a s k  is t o  def ine  t h e  d is tance  measure d ( i , n )  . Suppose 
P1 = (U1,V1) and P2 = (U ,V2) are two poin ts  i n  t h e  image. Define 2 

The convenience of t h i s  d i s tance  measure w i l l  become apparent.  

Equation ( 5 1 ,  at point  Pn = (U ,V 1, now becomes n n  

where 

Here W(U V is  t h e  diagonal matrix with t h e  general  term r a ( n , i )  n’ n 

The bes t  estimate of G i n  equation (12) is 

d = [ xTw ( un ,vn ) 2x  I - lxTw ( un ,vn 2Y 

Notice t h a t  each diagonal term of W(U,V) changes as t h e  G est imat ion point 
changes. Suppose G i s  estimated at . Then t h e  i t h  diagonal term of 

W(Un,Vn) is r d ( i 9 n ) .  I n  o ther  words, p:d(i*n) is t h e  weight of t h e  i t h  obser- 

va t ion ,  when est imat ing G a t  point  Pn. Suppose G is now t o  be estimated at  

another point  Q which is a dis tance  of d ( i , n )  + 1 from Pi. The t h e  appropriate  

weight f o r  t h e  i t h  observation i n  computing C a t  point Q i s  r d ( i  *n)+l, 
t h e  i t h  diagonal element of t h e  weighting matrix at  Q is  r t imes t h e  i t h  
diagonal element of t h e  weighting matrix a t  

Hence, 

Pn. 

Suppose C is t o  be estimated at ( U , V )  . Further ,  suppose C has been 
estimated a t  (U,V-l), ( U - l , V ) ,  and ( U - l , V - l ) ,  which means t h a t  weighting matrices 
have been defined at these  poin ts  a l s o .  
weighted case,  

Use t h e  p a r t i t i o n i n g  described i n  t h e  un- 
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The estimates of G 3t (U-1, V-11, (U-1, V), axid (U, V-11, respectively, are 

are the observations *om the sets A, A U B, and A U C, 'AC where Y Y-9 and 
respectively. 

Denote by R the matrix 

where r is the weighting scalar mentioned previously. The s ize  of R will be 
implicitly defined by the equation in which it appears. 

have the weights for the that W( "-1, v-1) ' W( u-1, v) ' and W(u, v-1) 
and * V I  elements in YA, YAB, and Y respectively. Partitioning W(il, l  

AC' 
gives w(u, v-1) 

= 
(u-1' v )  w 
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(B) are the diagonal weighting matrices for (u-1, v) (A)  and W (u-1, v) where W 

YA and SB, respectively, defined at (U-19 VI, and W 

(C) w e  the diagoal weighting matrices for YA and Yc, respectively, 
defined at (U, V-1) . 
dietance fram (3 ,  V) to any point in A is 2 greater than the distance d(1, n) 
from (U-1, V-1) to that point in A. Hence, the weight for an obaervation at 
any point P in A is r2r d(i'n). Notice that r 

'A) and (u, v-1 
w(u, v-1) 

Note that the distance from (U-1, V-1) to (U, V) Is 2. Furthermore, the 

is the general diagonal 1 
Of W(u-1, V-l)(Aj = W(U-1, v-1). This mean8 

Similarly, because the distance Prom (U, V) to a point Pi in A U B or A U C 
is 1 greater than the distmce Prom (U-1, V) or (U, V-11, respectively, to Pi, 

Now the machinery is gathered for defining C at (U, VI. Rccali that the best 
estimate of C at (U, V) is 



(17) 
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I&u t h e  inverse f a c t o r  of equation (17) can be r ewr i t t en  as 

Now, t h e  . ,rst f a c t o r  of equation (17) is  i n  terms o f  matrices t h a t  were defined 
at (U, V-1). (U-1, V), o r  (U-1, V-1) plus t h e  new term defined at (U, V). This 
is t h e  form of t h e  invkrse term which w i l l  be used. 

All t h a t  remains i s  t o  rewrite t h e  second f a c t o r  i n  equation (17). We know 

, . a  

where GA, GAB, and CAc are the  best estimates of G over A,  A U B, and A U C 

a t  (U-1, V - 1 ) ,  (U, V-11, and (U-1, V), respect ively.  
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Adjusting the first equation t o  change the weighting mtrix reference point 
t o  tu, v), 

Similarly, 

T ( A  U B)Ym = R 2 f  Id2 ( A  U B)XABim xABw?u. v )  AB (u-1, v) 
and 

(A c)yAC * 2 T  'ACW(U, 2 V-1 )  ( A  U C)XACdAC 

The second factor i n  (13)  can now be rewitten 
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To canplete the def ini t ion of the aaaptive classifier, t h e  method of haodLing 
t h e  t ra ining data w i l l  be define& 
described i n  section 3.0 will be described. 

Fin8lly. t he  procedure for C l a s S i f i C 8 t i C X i  

6.1 Training Data Calculations 

F i r s t ,  the signatures of t he  classif icat ioD sets must be estimate& This 
should be accomplished by evaluating t he  equations 

where 

p1 = t he  log of the refiectance of t h e  i t h  class plus a 

b, c ,  ti, e, f = the  coeff ic ients  of 8 

Y = t h e  vector of t h e  observations 

H = t h e  matrix over the t ra in ing  data such t h a t  the Jth l i n e  is 
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[I ,u ,v ,u2,u v ,v21 J J J J J J J  

I = a r w  vector  u i t h  a l l  zeroes except for a one irb t h e  i t h  loca t ion ,  
ind ica t ing  t h e  J t h  observat ion came f r o a n  t h e  i t h  class 

(u ,v = the posi t ion,  i n  U,V coordinates, of t h e  jth observat ion J J  

Equations ( 5 )  and (6)  show t h a t  equation (21) is a so lu t ion  of 

The so lu t ion  of eqAat ion  (21) w i l l  y i e l d  an est imate  of t h e  c l a s s  re f lec tances  
and the global  estimate of t h e  environment function 
likelihood c l a s s i f i e r ,  as described, f o r  example, i n  reference 4, t h e  covariance 
matrices of t n e  classes :ire also needed. These may bc e:;timatrd tJy 

8. I n  order  t o  use a maximum 

where 

[' = t h e  covariance matrix o f  t h e  i t h  c l a s s  
A 

Ei(*] = t h e  expected value of * taken over t h e  i t h  c l a s s  

i = the log t i  the  received s igna l  

C. = t h e  est imate  of t h e  environment; i . e . ,  bU + CV + dii: + cili' + f V 2  

,- : t h e  log of t h e  w e r a g e  re f lec tance  of t h e  i t h  c l n s s  p i u s  a i 

Fina l ly ,  tire bes t  l o c a l  es t imate  of t h e  environment vector  must b e  m d e  at  
point  (1,1), s ince  t h a t  is t h e  point where c l a s s i f i c a t i o n  w i l l  b. 
est imate  at (1,l) w i l l  be a so lu t ion  of  

T h e  bes t  l o c a l  
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where 
tui + vi - 2) 

vi = the weight of the ith obserwation (equal to $ , O  8 5 1 )  

Yi = the ith observation (scalar) for the channel being considered 

pi = the logarithm of the reflectance of the object of the ith observation plus a 

(U, ,Vi)  = the coordinates of the ith observation 

[a,. . . ,f IT = the vector of coefficients of the log environment polynomird.; 
that i . ,  0 = a 4 bU 4 CV 4 dU2 4 eW + fV2 

The solution of equation (22) is 

-1  T (KTW2K) k W2Y 

where 

W =  

r 

(23) 



A couple of comutents are necessary here. F i r s t ,  i n  general, r 0 , where r 
is defined i n  sect ion 5.2. This means t ha t  i n  e r t i ua t ing  the  environment using 
t r a in ing  data, the  old measurements are less downweighted than they would be i n  
the normal, weighted estimation procedure. This r e f l ec t s  the  greater securi ty  
r e su l t i ng  f r o m  knowing the  c lass i f ica t ion  of  t h e  data. Second, for the  loca l  eetf-  
mates of the  environment, a constant term w i l l  be used i n  the  polynomial. The 
globally defined polynomial also has a constant term, but t h e  term is combined with 
the  reflectance. 

6.2 Test Data Calculations 

The calculat ions t o  be performed on the  data t o  be c l a s s i f i ed  are 

1. 

2. Classify the observation. 

3. 

Estimate the  environment state from pr ior  observations. 

Update the estimate of t he  environment. 

The equations t o  perform these functions are as follows: 

Suppose the  observation at coordinates (U, V )  is t o  be processed. Denote 
the best estimate of t he  environment state vectov at ( U ,  V ) .  Then, 

- G(u-1, v )  + G(u, v-1) 
2 C- (u ,  v) - (24) 

The minus sign indicates t ha t  the observation at 
the estimate of G .  

(U, V )  has not yet  been used in  

The estimate 6- is determined fro= the  t ra in ing  data only. I n  the 
(1,l) -_ . For the  case where V = 1, then = $u ,  v-1) event t ha t  U = 1, then C . ( u ,  v )  - c- 

5 u ,  v) - c (u - l ,  VI' 

Now tha t  G has been estimated, 0 can be calculated where 

e + a [ ~ , u , v . u ~ , w , v ~ I ~ ~ ~ ,  ,,,) 

Then the number p may be estimated by 

a t Y - 0  

where 'I is the l o g  of the observed signal. 

( 2 5 )  

( 2 6 )  
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Acre 

L( i lp )  = t h e  l ike l ihood of  t h e  observat ion p belonging t o  t h e  i t h  class 

pi = t h e  mean of the i t h  class 

Ci = t h e  covariar.ce matrix of t h e  i t h  class 

The observat ion should be  c l a s s i f i e d  i n t o  t h e  class i such t h a t  

I n  t h e  case where L( i I p )  = L( j ( p ) ,  some a r b i t r a r y  choice between i and J m S t  
be made. 

Now that t h e  c l a s s i f i c a t i o n  has been es tab l i shed ,  t h e  observat ion may be  used 
t o  update t h e  estimate o f  
flow char t  o f  t h e  est imat ion algorithm is given i n  f igu re  1. 
i r ,  f i gu re  2. 

G. This  is  done by means of  equation ( 2 0 ) .  A desc r ip t ive  
Details are given 

7.0 COE.ICWSION 

T? iJFe w i t h  s igna ture  - r s r i a b i l i t y ,  an  algorithm has been def ined which w i l l  
aLiapt ivrxly c l a s s i f y  remotely sensed da ta  i n  t h e  v i s i b l e  and near-infrared band. 

‘,t. :--ignnl is d i . i i  fed. i n t  7 a space-dependent component and a target-dependent 
1 .:I n p n 4 .  The tsrget-Jcrendent conponent i s  assumed f ixed ac ross  t h e  image f o r  
el .$. tat’gc.t type. The  space-dependent conponent is estimated i t e r a t i v e l y  by a 
w~:.qLtei, ieast-squares  algorithm. Included i n  t h e  study was t h e  der iva t ion  of 
i:ie s t ’ n x r  model and two-dimen::icn&l, e s t h a t  ion algorithm. 



USING ONLY TRAININ6 SETS 

I F  R OBSERVED IS CLASSIFIED AS I N  CLASS i, 
COMPUTE -, OBSERVED AS EQUAL TO V-Ri. USE 

OBSERVED TO FIND NEW ESTIMATE OF G 
i 

* (21 1 

I COMPUTE THE COVARIANCE MATRIX OF I R = Y-c FOR EACH CLASS 

t 
(23) FIND BEST ESTIPlATE OF G AT POINT (1.1) I * 

I USING ALL OBSERVATIONS I 

I FINO I N I T I A L  VALUE OF G AT NEW PIXEL 4 AND CALCULATE e = XG 

GO TO NEW POINT 

* liUMBERS I N  PARENTHESE REFER 
TO EQUATIONS I N  THE TEXT 

F i g u r e  1 .- Desc r ip t i ve  f l o w  cha r t  o f  es t ima t ion  a l q o r i t b .  
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* (21) 

= (HTH)” HTY 

I 
I 
L -- 

c =z{[(Y-e)-cJ l ( Y - o , - P p }  
N 

NOTE: THE SUM I S  OVER ALL 
OBSERVATIONS OF THE CLASS 
I N  THE TRAINING SETS AND N 
I S  THE NUMBER OF OBSERVATIONS 

L 
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NUYBERS I N  PARENTHESES REFER TO 
TO' EQUATIONS I N  THE TEXT 

Figure 2.- Contlnued. 
Page 2 of 3 
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* NUMBERS IN PARENTHESES REFER 
TO EQUATIONS I N  THE TEXT 

F l g u r e  2. -  Concluded. Page 3 o f  3 
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